Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires

نویسندگان

  • Jiming Bao
  • Ilan Shalish
  • Zhihua Su
  • Ron Gurwitz
  • Federico Capasso
  • Xiaowei Wang
  • Zhifeng Ren
چکیده

Photoconductivity is studied in individual ZnO nanowires. Under ultraviolet (UV) illumination, the induced photocurrents are observed to persist both in air and in vacuum. Their dependence on UV intensity in air is explained by means of photoinduced surface depletion depth decrease caused by oxygen desorption induced by photogenerated holes. The observed photoresponse is much greater in vacuum and proceeds beyond the air photoresponse at a much slower rate of increase. After reaching a maximum, it typically persists indefinitely, as long as good vacuum is maintained. Once vacuum is broken and air is let in, the photocurrent quickly decays down to the typical air-photoresponse values. The extra photoconductivity in vacuum is explained by desorption of adsorbed surface oxygen which is readily pumped out, followed by a further slower desorption of lattice oxygen, resulting in a Zn-rich surface of increased conductivity. The adsorption-desorption balance is fully recovered after the ZnO surface is exposed to air, which suggests that under UV illumination, the ZnO surface is actively "breathing" oxygen, a process that is further enhanced in nanowires by their high surface to volume ratio.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Persistent Photoconductivity Studies in Nanostructured ZnO UV Sensors

The phenomenon of persistent photoconductivity is elusive and has not been addressed to an extent to attract attention both in micro and nanoscale devices due to unavailability of clear material systems and device configurations capable of providing comprehensive information. In this work, we have employed a nanostructured (nanowire diameter 30-65 nm and 5 μm in length) ZnO-based metal-semicond...

متن کامل

Tailoring the charge carrier dynamics in ZnO nanowires: the role of surface hole/electron traps.

Post-fabrication thermal-annealed ZnO nanowires (NWs) in an oxidizing (or a reducing) ambient were investigated using transient photoluminescence and X-ray photoelectron spectroscopy. Our findings reveal an ultrafast hole-transfer process to the surface adsorbed oxygen species (e.g., O(2)(-)) occurring within a few hundred picoseconds (ps) in the air-annealed samples; and an ultrafast electron-...

متن کامل

Persistent photoinduced superconductivity

We review work done at UCSD on persistent photoconductivity and photoinduced superconductivity in REBa,Cu~O, thin films. It is shown that the resistivity, Hall coefficient and c-axis parameter change significantly upon illumination. All these effects require the presence of oxygen vacancies. The maximum enhancement of the conductivity with illumination occurs for fully deoxygenated ,samples (x=...

متن کامل

Photoconductivity in VO2–ZnO Inter-Nanowire Junction and Nanonetwork Device

We report electrical and optoelectrical properties of a cross-junction of two semiconducting nanowires. Semiconducting nanowires and their junction play an important role in nanonetwork device. By mechanically manipulating the nanowires, cross-junction nanodevices are fabricated on SiO2/Si substrate using VO2 and ZnO nanowires. These junctions are formed across prepatterned two-probe Au electro...

متن کامل

Giant Persistent Photoconductivity of the WO3 Nanowires in Vacuum Condition

A giant persistent photoconductivity (PPC) phenomenon has been observed in vacuum condition based on a single WO3 nanowire and presents some interesting results in the experiments. With the decay time lasting for 1 × 10(4) s, no obvious current change can be found in vacuum, and a decreasing current can be only observed in air condition. When the WO3 nanowires were coated with 200 nm SiO2 layer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011